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Two-Dimensional Noncommutative Quantum
Dynamics
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This paper gives the two-dimensional extension for the noncommutative quantum
dynamics of Rembielinski and Smolinski.

Since the introduction of the noncommutative plane (so-called quantum
plane) (Wess and Zumino, 1990) many theoretical physicists have attempted
to build physical models based on this type of noncommutative geometry.
The work of Aref’eva and Volovich (1991), Schwenk and Wess (1992),
and Rembielinski and Smolinski (1993) relates to one-dimensional quantum
dynamics only. In the commutative plane we can easily extend the results
obtained in one dimension to more general cases, those in N dimensions.
However, this is not the case in the quantum plane. In this paper we extend
the result given in Rembielinski and Smolinski (1993) to the two-dimen-
sional case.

Our starting point for the noncommutative quantum dynamics in two
dimensions is the following extended Hamiltonian:

H = piK; + piK; + V(x, K, A, 3, K, A) 1
The commutation relations between coordinates and momenta are given by
xp; = @’px + ifighl + Myp,
YPx = qpyy
XPy = qpyx
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Wy = q'pyy + kA2
PPy = qp,p;

xy =q 'yx @
where A = ¢> — 1 and K,, K, A,, and A, are assumed to be additional
Hermitian generators of the extended noncommutative algebra in two dimen-
sions. Here we assume that the commutation relations among coordinates,
momenta, and additional generators take the following form:

XA, = EAx
P = & A,
YA, = EAy
pA, = EAp,
xA, = §Ax
YA = EAYy
pry = §3Ay x
PyA: = EAp,
AA, = mAA,
xK, = 12K.x

K, = €K.p,

yK, = 72K,y
p)K, = €K p,

xK, = 7\ Kx

yK; = 1K,y
pry = T3Ky x
pK: = 7Kp,
AK, = KA,
ALK, = K A,
AK, = KA,

Any = "]4KxAy (3)
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The consistency condition of this system requires

g8 =1, n? =&
£& =1, m=1
M =&T, Tty = (67,)°

N2 = €Ty, TIT3 = (Tyey)2
M = €Ty My = (""2""4)1/2 = Ty

If we assume that A,, A,, K,, and K, are constant in time, we have

. —i -
Ax—h[H’Ax] 0

. i
Ay=E[H,Ay] =0
. i
K.=-[H K]=0
X ﬁ, [ ]
. i
Ky=E[H,Ky] =0
which implies that
€n.E =1, €16 =1
ek =1, 1€ =1
€ =1, T, =1
€ =1, T =1
T = gx_ly Ty = §2_1
Ty = gl_l’ Ty = gy_l

&= & §=§
1= &% =2
and the potential energy should satisfy
V(Ex, £K,, A, &y, K, A))
= V(&x, K, &AM, ), K,, &)
= V&, Ko, A, 8y, K, £,A)
= V(x, K;, A, y, K, A) &)
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Then the extended noncommutative relations among coordinates, momenta,

and additional generators take the following form:

Then the Heisenberg equations of motion for x and y are given by

xA, = EAx
pA = &'Ap,
yA, = EAy
A, = & 'Ap,
xA, = EAx
YA, = §Ay
pA, = & 'Ayp,
pA. = & 'Ap,
AA, = AA,
xK, = £,°K x
K, = Kp,
yK, = &K,y
K, = Kp,
XK, = 7K
yK, = &K,y
p:K, = K,p,
K. = Kp,
AK, = &'KA,

AK, = £ KA,
AK, =& leAy
AK, = £'KA,

(6)

!
i

= [ (&} — qpix + q(¢* + E)p.A; + NG + l)pxypy]KE )
+
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and
[H ¥l

§M~

(& — PHK:

S| ~.

+ [;’; (& — ¢y + q(¢* + §§)pyA§]K§ (8)

[
&

in order to make the potential terms vanish. Similarly, we have the Heisenberg

equation of motion for the momenta p, and p;:

where we set

. i
Pxr=7 [H’ px]

%( 1 - ¢PApip.K;
+ épx[vafx, Ko Ay @y, Ky A) — V(x, Koo Ay, 3, Ky A)]

Vix, K, A, gy, K, A)

digrey2x
i d
te Agp, iy Vigx, K, §,A,, qy, K, §,A,)
A2 % Vix, £K,, Ay gy, €K, A) ©
and
[H Pyl

S| ~.

i

= (¢* — DppiK?

§\'

+ é pIVigx, Ky, EA,, g%, K, £A) — V(x, Koy Ay 3, K,y A)]

Vigx, £K,, Ay, £, £K,, A) (10

- q
Ay



1964 Chung

where
d
d_k-; V(x’ Kx’ Axa Y. Kya Ay)
_ V(kx9 Kxa Ax, Y Kys Ay) - V(x, Kx, Axa Vs Ky, Ay)
xtk — 1)
d
2y V0o Ko Ao K )
_ V(x, K, Am k)’, Ky9 Ay) - V(x, K, Axa Y Ky’ Ay)
yk = 1)
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